

Journal of Alloys and Compounds 224 (1995) 14-17

The stannides RE₃Co₆Sn₅ (RE=Y, Nd, Sm, Gd, Tb, Ho-Tm) with Dy₃Co₆Sn₅-type structure

Rainer Pöttgen

Max-Planck-Institut für Festkörperforschung, Heisenbergstrasse 1, D-70569 Stuttgart, Germany

Received 17 November 1994

Abstract

The title compounds were prepared from the elements by arc-melting and subsequent annealing at 1020 K. While most of the compounds were already present in the as cast samples, $Y_3Co_6Sn_5$ and $Tm_3Co_6Sn_5$ form only after the annealing process. All stannides have the $Dy_3Co_6Sn_5$ -type structure, a ternary ordered version of the La_3Al_{11} -type. The structure of $Sm_3Co_6Sn_5$ was refined from single-crystal X-ray data: *Immm*, a = 432.8(1) pm, b = 1246.6(2) pm, c = 978.5(1) pm, V = 0.5279(2) nm³, Z = 2, $R_1 = 0.0178$, 571 F^2 values and 28 variable parameters.

Keywords: Stannides; Arc melting; Annealing

1. Introduction

Numerous investigations in the ternary systems rare earth metal–cobalt–tin resulted in the syntheses of several isotopic series with different structure types, e.g. RECoSn [1–3] (TiNiSi-type), RECo₆Sn₆ [4] (YCo₆Ge₆-type) and RE₇Co₆Sn₂₃ [5,6] (Ho₇Co₆Sn₂₃-type). In the tin-rich corner of these phase diagrams, several compounds with compositions close to 3:4:13 (presumably Pr₃Rh₄Sn₁₃-type) have been discovered while searching for new superconducting materials [7–9]. For the lanthanum and scandium systems, the compounds LaCo_{0.52}Sn₂ [10] (CeNiSi₂-type), La₃Co₂Sn₇ [11] and ScCo₂Sn [3,12] (MnCu₂Al-type) have also been communicated.

Recently, we reported on the crystal structure of $Dy_3Co_6Sn_5$ [13], a new ternary ordered version of the La_3Al_{11} -type [14]. We have now extended these investigations to several other rare earth metal—cobalt—tin systems and discovered new compounds that are isotypic with $Dy_3Co_6Sn_5$. The syntheses of these compounds and the structure refinement of $Sm_3Co_6Sn_5$ are reported in the present paper.

2. Sample preparation

Starting materials for the preparation of the ternary stannides were ingots of the rare earth metals (Johnson

Matthey), cobalt powder (Ventron, 325 mesh) and tin granules (Merck), all with stated purities greater than 99.9%. The rare earth ingots were mechanically cut into small pieces, mixed with the cobalt powder in the ideal atomic ratio and cold-pressed to small pellets. These pellets were melted together with the tin granules in an arc-melting furnace under an argon atmosphere (about 600 mbar). The argon had been purified before by molecular sieves, titanium sponge at 900 K and an oxisorb catalyst [15]. All samples were turned over and remelted several times to ensure good homogeneity. After several meltings, the weight loss of the samples was always smaller than 1%. For the subsequent annealing process (two weeks at 1020 K), the samples were enclosed into evacuated silica tubes. While most of the samples were already present in the arc-melted samples, Y₃Co₆Sn₅ and Tm₃Co₆Sn₅ were formed during the annealing process.

All stannides are stable in air. No decomposition could be observed after several weeks. While powder samples are dark grey, single crystals exhibit a silvery, metallic lustre.

3. Lattice constants

Guinier powder diagrams of all samples were recorded with Cu $K\alpha_1$ radiation and silicon (a = 543.07 pm) as

Table 1			
Lattice constants of the orthorhombic stannides	RE ₃ Co ₆ Sn ₅ with ordered	La ₃ Al ₁₁ -type structure (star	dard deviations in parentheses)

Compound	а	<i>b</i> (pm)	c (pm)	V (nm³)	Ref.
	(pm)				
Y ₃ Co ₆ Sn ₅	430.3(1)	1236.9(2)	970.1(1)	0.5163(2)	This work
Nd ₃ Co ₆ Sn ₅	434.8(1)	1253.1(2)	984.9(1)	0.5366(2)	This work
Sm ₃ Co ₆ Sn ₅	432.8(1)	1246.6(2)	978.5(1)	0.5279(2)	This work
Gd ₃ Co ₆ Sn ₅	431.4(1)	1242.2(1)	974.2(1)	0.5221(2)	This work
Tb ₃ Co ₆ Sn ₅	430.7(1)	1238.1(1)	970.4(1)	0.5175(2)	This work
Dy ₃ Co ₆ Sn ₅	430.3(1)	1235.0(2)	967.6(3)	0.5142(2)	[13]
Ho ₃ Co ₆ Sn ₅	429.8(1)	1231.6(2)	965.5(1)	0.5111(2)	This work
Er ₃ Co ₆ Sn ₅	429.5(1)	1229.2(1)	962.6(1)	0.5082(2)	This work
$Tm_3Co_6Sn_5$	429.4(1)	1226.3(2)	960.0(2)	0.5055(2)	This work

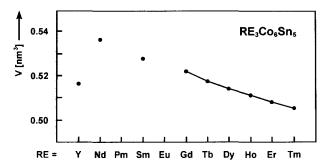


Fig. 1. Cell volumes of the stannides with Dy₃Co₆Sn₅-type structure. The size of the dots corresponds approximately to the standard deviation.

Table 2 Crystal data and structure refinement for $Sm_3Co_6Sn_5$

Empirical formula	Sm ₃ Co ₆ Sn ₅
Formula weight	1398.08 g mol ⁻¹
Temperature	293(2) K
Wavelength	56.087 pm
Crystal system	orthorhombic
Space group	Immm
Unit cell dimensions	see Table 1
Formula units per cell	Z=2
Calculated density	$8.795 Mg m^{-3}$
Crystal size	$20\times23\times53~\mu\text{m}^3$
Absorption correction	from ψ-scan data
Transmission ratio (max:min)	1:0.969
Absorption coefficient	19.55 mm ⁻¹
F (000)	1196
θ range for data collection	2.09-24.91°
Range in hkl	$0 \le h \le 6, -18 \le k \le 18,$
•	-14≤1≤14
Scan mode	ω / θ
Total No. reflections	1940
Independent reflections	571 $(R_{int} = 0.0256)$
Refinement method	Full-matrix least-squares on F2
Data/restraints/parameters	571/0/28
Goodness-of-fit on F ²	1.024
Final R indices $[I > 2\sigma(I)]$	$R_1 = 0.0178, \ wR_2 = 0.0253$
R indices (all data)	$R_1 = 0.0240, \ wR_2 = 0.0263$
Extinction coefficient	0.00117(5)
Largest diff. peak and hole	$1365 \text{ and } -1402 \text{ e nm}^{-3}$

an internal standard. Indices could be assigned on the basis of the orthorhombic unit cell found in the single crystal investigations. The identification of the diffraction lines was ensured by intensity calculations [16], taking the positional parameters of the refined structures of $\mathrm{Dy_3Co_6Sn_5}$ and $\mathrm{Sm_3Co_6Sn_5}$. The lattice constants (Table 1) were obtained by least-squares fits of the powder data. The cell parameters of the samarium compound determined on the four-circle diffractometer from 25 selected reflections in the range $43.0^\circ < 2\theta < 46.9^\circ [a = 432.44(2) \text{ pm}, b = 1246.64(4) \text{ pm}, c = 977.97(4) \text{ pm}$ and $V = 0.52723(3) \text{ nm}^3$ are in excellent agreement with the powder data.

The plot of the cell volumes (Fig. 1) shows the expected lanthanoid contraction. The cell volume of the yttrium compound is between those of the terbium and dysprosium compounds. This was also noted for the phase series RE₇Co₆Sn₂₃ [5,6] and RECoSn [1–3]. In contrast, in the series RECo₆Sn₆ [4] the cell volume of the yttrium compound is comparable to the cell volume of the corresponding holmium compound.

4. Structure refinement of Sm₃Co₆Sn₅

Single crystals used for the structure refinement were isolated from a crushed ingot of the annealed sample. They were investigated by use of Buerger precession photographs to establish their suitability for intensity data collection. The precession photographs showed orthorhombic symmetry and only systematic extinctions of a body-centred lattice. This led to the space groups *Immm*, *Imm2*, $I2_12_1$ and I222, of which the centrosymmetric group *Immm* (No. 71) was found to be correct during structure refinement, in agreement with the earlier results for Dy₃Co₆Sn₅ [13].

Intensity data were collected with an automated four-circle diffractometer (CAD4) using graphite monochromatized Ag $K\alpha$ radiation and a scintillation counter with pulse height discrimination. Experimental details are listed in Table 2.

Table 3 Atomic coordinates and anisotropic displacement parameters (pm²) for Sm₃Co₆Sn₅. U_{eq} is defined as one third of the trace of the orthogonalized U_{ij} tensor. The anisotropic displacement factor exponent takes the form: $-2\pi^2[(ha^*)^2U_{11} + ... + 2hka^*b^*U_{12}]$

Atom	Immm	х	у	z	U_{eq}	$U_{\mathfrak{t}\mathfrak{t}}$	U_{22}	U_{33}	U_{23}	$U_{12} = U_{13}$
Sm1	2 <i>a</i>	0	0	0	83(1)	97(2)	69(2)	82(2)	0	0
Sm2	4g	0	0.31512(3)	0	69(1)	65(2)	69(2)	73(2)	0	0
Co1	4j	0	1/2	0.19990(10)	86(2)	66(4)	64(4)	128(5)	0	0
Co2	8 <i>l</i>	0	0.10777(5)	0.27435(7)	76(1)	62(3)	87(3)	77(3)	11(2)	0
Sn1	2c	0	0	1/2	75(1)	84(3)	67(3)	75(3)	0	0
Sn2	81	0	0.32366(2)	0.34161(4)	70(1)	62(1)	80(1)	67(2)	14(1)	0

Table 4 Interatomic distances (pm) in the structure of Sm₃Co₆Sn₅. All distances shorter than 475 pm (Sm-Co, Sm-Sn), 430 pm (Sm-Sm, Co-Sn, Sn-Sn) and 390 pm (Co-Co) are listed. Standard deviations are all equal or less than 0.1 pm

Sm ₁ :	4	Co ₂	300.2
	8	Sn ₂	345.2
	4	Co ₁	364.8
	2	Sm ₂	392.8
Sm ₂ :	2	Co ₁	302.3
	2	Sn_1	316.1
	4	Sn_2	317.5
	4	Co ₂	323.8
	2	Sn ₂	334.4
	2	Co_2	372.7
	1	Sm_{τ}	392.8
Co ₁ :	4	Co ₂	256.0
	2	Sn_2	259.9
	2	Sn_1	291.7
	2	Sm ₂	302.3
	2	Sm_1	364.8
Co ₂ :	2	Co_1	256.0
	1	Sn_t	258.5
	2	Sn_2	258.9
	1	Co ₂	268.7
	1	Sn_2	277.1
	1	Sm_1	300.2
	2	Sm_2	323.8
	1	Sm_2	372.7
Sn ₁ :	4	Co ₂	258.5
	4	Co_1	291.7
	4	Sm_2	316.1
Sn ₂ :	2	Co ₂	258.9
	1	Co ₁	259.9
	1	Co_2	277.1
	1	Sn_2	310.0
	2	Sm_2	317.5
	1	Sm_2	334.4
	2	Sn ₂	335.7
	2	Sm ₁	345.2

The atomic parameters determined for $Dy_3Co_6Sn_5$ [13] were taken as starting values. The structure was then successfully refined using SHELXL-93 [17] with anisotropic displacement parameters for all atoms. A final difference Fourier synthesis revealed no significant residual peaks. The results of the refinement are listed

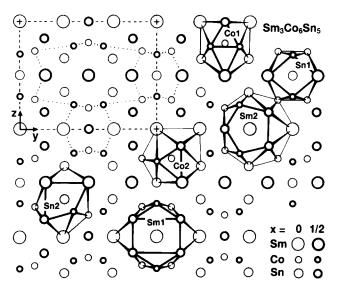


Fig. 2. Crystal structure and coordination polyhedra of $Sm_3Co_6Sn_5$ projected onto the yz plane. All atoms are situated on mirror planes at x=0 and x=1/2 indicated by thin and thick lines, respectively. The distorted $ThCr_2Si_2$ - and Cu_3Au -like slabs are emphasized by dotted lines in the upper left-hand part.

in Table 2. Atomic coordinates and anisotropic displacement parameters are given in Table 3; interatomic distances are given in Table 4. Structure factor tables may be obtained from the author on request.

5. Discussion

Eight ternary stannides of composition RE₃Co₆Sn₅ (RE = Y, Nd, Sm, Gd, Tb, Ho-Tm) were reported for the first time. They crystallize in the orthorhombic Dy₃Co₆Sn₅-type structure [13], a ternary ordered variant of the La₃Al₁₁-type [14]. The present structure refinement of Sm₃Co₆Sn₅ fully confirms the structure determination for the prototype Dy₃Co₆Sn₅.

A projection of the crystal structure of $Sm_3Co_6Sn_5$ is shown in Fig. 2. It is built up from distorted $ThCr_2Si_2$ -and Cu_3Au -like slabs of composition $SmCo_2Sn_2$ and $SmCo_2Sn$. The periodic intergrowth of these slabs may be rationalized by the formula $Sm_3Co_6Sn_5 \equiv 2SmCo_2Sn_2 + SmCo_2Sn$. The different slabs are outlined

in the upper left-hand part of Fig. 2. A more detailed description of the crystal chemistry of this structural family is given in Ref. [13]. As already discussed for the dysprosium compound, the SmCo₂Sn₂ and SmCo₂Sn slabs do not exist as ternary phases. The Cu₃Au structure is only known for SmSn₃ [18].

The cell volume of the samarium compound is about 3% larger than that of the dysprosium compound as expected from the lanthanoid contraction. This is also reflected by the interatomic distances which are slightly larger in Sm₃Co₆Sn₅, although, there are no significant differences in the coordination shells when compared to Dy₃Co₆Sn₅.

The structure determinations of $Dy_3Co_6Sn_5$ and $Sm_3Co_6Sn_5$ show two crystallographically different rare earth positions. These rare earth atoms form three orthorhombically distorted body-centred subcells like in the $ThCr_2Si_2$ and $CaBe_2Ge_2$ structures. Thus, one might expect interesting magnetic and electrical properties for this new family of ternary stannides.

Acknowledgments

I thank Prof. Dr. A. Simon for his interest and steady support of this work. I am also grateful to W. Röthenbach for the Guinier powder patterns and the Stiftung Stipendienfonds des Verbandes der Chemischen Industrie for a Liebig stipend.

References

- R.V. Skolozdra, O.E. Koretskaya and Yu.K. Gorelenko, Ukrains'kii Fiz. Z., 27 (1982) 263.
- [2] A.E. Dwight, P.P. Vaishnava, C.W. Kimball and J.L. Matykiewicz, J. Less-Common Met., 119 (1986) 319.
- [3] B.Ya. Kotur and I.P. Klyuchka, Inorg. Mater., 25 (1989) 518.
- [4] R.V. Skolozdra and O.E. Koretskaya, *Ukrains'kii Fiz. Z.*, 29 (1984) 877.
- [5] R.V. Skolozdra, L.G. Aksel'rud and O.E. Koretskaya, Sov. Phys. Crystallogr., 30 (1985) 584.
- [6] R.V. Skolozdra, O.E. Koretskaya and L.G. Aksel'rud, *Ukrains'kii Fiz. Z.*, 31 (1986) 1537.
- [7] G.P. Espinosa, Mater. Res. Bull., 15 (1980) 791.
- [8] A.S. Cooper, Mater. Res. Bull., 15 (1980) 799.
- [9] G.P. Espinosa, A.S. Cooper and H. Barz, *Mater. Res. Bull.*, 17 (1982) 963.
- [10] W. Dörrscheidt, G. Savelsberg, J. Stöhr and H. Schäfer, J. Less-Common Met., 83 (1982) 269.
- [11] W. Dörrscheidt and H. Schäfer, J. Less-Common Met., 70 (1980) P1.
- [12] A.E. Dwight and C.W. Kimball, J. Less-Common Met., 127 (1987) 179.
- [13] R. Pöttgen, Z. Naturforsch., in press.
- [14] A.H. Gomes de Mesquita and K.H.J. Buschow, Acta Crystallogr., 22 (1967) 497.
- [15] H.L. Krauss and H. Stach, Z. Anorg. Allg. Chem., 366 (1969) 34.
- [16] K. Yvon, W. Jeitschko and E. Parthé, J. Appl. Crystallogr., 10 (1977) 73.
- [17] G.M. Sheldrick, SHELXL-93, Program for the Crystal Structure Refinement, University of Göttingen, 1993.
- [18] I.R. Harris and G.V. Raynor, J. Less-Common Met., 9 (1965)